Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations
نویسندگان
چکیده
Quasi-linear parabolic equations are discretised in time by fully implicit backward difference formulae (BDF) as well as by implicit–explicit and linearly implicit BDF methods up to order 5. Under appropriate stability conditions for the various methods considered, we establish optimal order a priori error bounds by energy estimates, which become applicable via the Nevanlinna-Odeh multiplier technique.
منابع مشابه
Maximum Norm Analysis of Implicit–explicit Backward Difference Formulae for Nonlinear Parabolic Equations
We establish optimal order a priori error estimates for implicit– explicit BDF methods for abstract semilinear parabolic equations with timedependent operators in a complex Banach space setting, under a sharp condition on the non-self-adjointness of the linear operator. Our approach relies on the discrete maximal parabolic regularity of implicit BDF schemes for autonomous linear parabolic equat...
متن کاملStability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations
We analyze stability properties of BDF methods of order up to 5 for linear parabolic equations as well as of implicit–explicit BDF methods for nonlinear parabolic equations by energy techniques; time dependent norms play also a key role in the analysis.
متن کاملCombining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations
We analyze fully implicit and linearly implicit backward difference formula (BDF) methods for quasilinear parabolic equations, without making any assumptions on the growth or decay of the coefficient functions. We combine maximal parabolic regularity and energy estimates to derive optimal-order error bounds for the time-discrete approximation to the solution and its gradient in the maximum norm...
متن کاملLinearly implicit methods for nonlinear parabolic equations
We construct and analyze combinations of rational implicit and explicit multistep methods for nonlinear parabolic equations. The resulting schemes are linearly implicit and include as particular cases implicit-explicit multistep schemes as well as the combination of implicit Runge-Kutta schemes and extrapolation. An optimal condition for the stability constant is derived under which the schemes...
متن کاملBackward difference formulae: New multipliers and stability properties for parabolic equations
We determine new, more favourable, and in a sense optimal, multipliers for the threeand five-step backward difference formula (BDF) methods. We apply the new multipliers to establish stability of these methods as well as of their implicit–explicit counterparts for parabolic equations by energy techniques, under milder conditions than the ones recently imposed in [4, 1].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 131 شماره
صفحات -
تاریخ انتشار 2015